Github
https://github.com/marketplace/models
tip
We support ALL Github models, just set model=github/<any-model-on-github> as a prefix when sending litellm requests
Ignore company prefix: meta/Llama-3.2-11B-Vision-Instruct becomes model=github/Llama-3.2-11B-Vision-Instruct
API Keyโ
# env variable
os.environ['GITHUB_API_KEY']
Sample Usageโ
from litellm import completion
import os
os.environ['GITHUB_API_KEY'] = ""
response = completion(
    model="github/Llama-3.2-11B-Vision-Instruct", 
    messages=[
       {"role": "user", "content": "hello from litellm"}
   ],
)
print(response)
Sample Usage - Streamingโ
from litellm import completion
import os
os.environ['GITHUB_API_KEY'] = ""
response = completion(
    model="github/Llama-3.2-11B-Vision-Instruct", 
    messages=[
       {"role": "user", "content": "hello from litellm"}
   ],
    stream=True
)
for chunk in response:
    print(chunk)
Usage with LiteLLM Proxyโ
1. Set Github Models on config.yamlโ
model_list:
  - model_name: github-Llama-3.2-11B-Vision-Instruct # Model Alias to use for requests
    litellm_params:
      model: github/Llama-3.2-11B-Vision-Instruct
      api_key: "os.environ/GITHUB_API_KEY" # ensure you have `GITHUB_API_KEY` in your .env
2. Start Proxyโ
litellm --config config.yaml
3. Test itโ
Make request to litellm proxy
- Curl Request
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "github-Llama-3.2-11B-Vision-Instruct",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ]
    }
'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="github-Llama-3.2-11B-Vision-Instruct", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
    model = "github-Llama-3.2-11B-Vision-Instruct",
    temperature=0.1
)
messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)
print(response)
Supported Models - ALL Github Models Supported!โ
We support ALL Github models, just set github/ as a prefix when sending completion requests
| Model Name | Usage | 
|---|---|
| llama-3.1-8b-Instant | completion(model="github/Llama-3.1-8b-Instant", messages) | 
| Llama-3.1-70b-Versatile | completion(model="github/Llama-3.1-70b-Versatile", messages) | 
| Llama-3.2-11B-Vision-Instruct | completion(model="github/Llama-3.2-11B-Vision-Instruct", messages) | 
| Llama3-70b-8192 | completion(model="github/Llama3-70b-8192", messages) | 
| Llama2-70b-4096 | completion(model="github/Llama2-70b-4096", messages) | 
| Mixtral-8x7b-32768 | completion(model="github/Mixtral-8x7b-32768", messages) | 
| Phi-4 | completion(model="github/Phi-4", messages) | 
Github - Tool / Function Calling Exampleโ
# Example dummy function hard coded to return the current weather
import json
def get_current_weather(location, unit="fahrenheit"):
    """Get the current weather in a given location"""
    if "tokyo" in location.lower():
        return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
    elif "san francisco" in location.lower():
        return json.dumps(
            {"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
        )
    elif "paris" in location.lower():
        return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
    else:
        return json.dumps({"location": location, "temperature": "unknown"})
# Step 1: send the conversation and available functions to the model
messages = [
    {
        "role": "system",
        "content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
    },
    {
        "role": "user",
        "content": "What's the weather like in San Francisco?",
    },
]
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {
                        "type": "string",
                        "enum": ["celsius", "fahrenheit"],
                    },
                },
                "required": ["location"],
            },
        },
    }
]
response = litellm.completion(
    model="github/Llama-3.2-11B-Vision-Instruct",
    messages=messages,
    tools=tools,
    tool_choice="auto",  # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# Step 2: check if the model wanted to call a function
if tool_calls:
    # Step 3: call the function
    # Note: the JSON response may not always be valid; be sure to handle errors
    available_functions = {
        "get_current_weather": get_current_weather,
    }
    messages.append(
        response_message
    )  # extend conversation with assistant's reply
    print("Response message\n", response_message)
    # Step 4: send the info for each function call and function response to the model
    for tool_call in tool_calls:
        function_name = tool_call.function.name
        function_to_call = available_functions[function_name]
        function_args = json.loads(tool_call.function.arguments)
        function_response = function_to_call(
            location=function_args.get("location"),
            unit=function_args.get("unit"),
        )
        messages.append(
            {
                "tool_call_id": tool_call.id,
                "role": "tool",
                "name": function_name,
                "content": function_response,
            }
        )  # extend conversation with function response
    print(f"messages: {messages}")
    second_response = litellm.completion(
        model="github/Llama-3.2-11B-Vision-Instruct", messages=messages
    )  # get a new response from the model where it can see the function response
    print("second response\n", second_response)