Call any LiteLLM model in your custom format
Use this to call any LiteLLM supported .completion() model, in your custom format. Useful if you have a custom API and want to support any LiteLLM supported model.
How it worksโ
Your request โ Adapter translates to OpenAI format โ LiteLLM processes it โ Adapter translates response back โ Your response
Create an Adapterโ
Inherit from CustomLogger and implement 3 methods:
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.llms.openai import ChatCompletionRequest
from litellm.types.utils import ModelResponse
class MyAdapter(CustomLogger):
    def translate_completion_input_params(self, kwargs) -> ChatCompletionRequest:
        """Convert your format โ OpenAI format"""
        # Example: Anthropic to OpenAI
        return {
            "model": kwargs["model"],
            "messages": self._convert_messages(kwargs["messages"]),
            "max_tokens": kwargs.get("max_tokens"),
        }
    def translate_completion_output_params(self, response: ModelResponse):
        """Convert OpenAI format โ your format"""
        # Return your provider's response format
        return MyProviderResponse(
            id=response.id,
            content=response.choices[0].message.content,
            usage=response.usage,
        )
    def translate_completion_output_params_streaming(self, completion_stream):
        """Handle streaming responses"""
        return MyStreamWrapper(completion_stream)
Register itโ
import litellm
my_adapter = MyAdapter()
litellm.adapters = [{"id": "my_provider", "adapter": my_adapter}]
Use itโ
from litellm import adapter_completion
# Now you can use your provider's format with any LiteLLM model
response = adapter_completion(
    adapter_id="my_provider",
    model="gpt-4",  # or any LiteLLM model
    messages=[{"role": "user", "content": "hello"}],
    max_tokens=100
)
Streamingโ
stream = adapter_completion(
    adapter_id="my_provider",
    model="gpt-4",
    messages=[{"role": "user", "content": "hello"}],
    stream=True
)
for chunk in stream:
    print(chunk)
Asyncโ
from litellm import aadapter_completion
response = await aadapter_completion(
    adapter_id="my_provider",
    model="gpt-4",
    messages=[{"role": "user", "content": "hello"}]
)
Example: Anthropic Adapterโ
Here's how we translate Anthropic's format:
Input Translationโ
def translate_completion_input_params(self, kwargs):
    model = kwargs.pop("model")
    messages = kwargs.pop("messages")
    
    # Convert Anthropic messages to OpenAI format
    openai_messages = []
    for msg in messages:
        if msg["role"] == "user":
            openai_messages.append({
                "role": "user",
                "content": msg["content"]
            })
    
    # Handle system message
    if "system" in kwargs:
        openai_messages.insert(0, {
            "role": "system",
            "content": kwargs.pop("system")
        })
    
    return {
        "model": model,
        "messages": openai_messages,
        **kwargs  # pass through other params
    }
Output Translationโ
def translate_completion_output_params(self, response):
    return AnthropicResponse(
        id=response.id,
        type="message",
        role="assistant",
        content=[{
            "type": "text",
            "text": response.choices[0].message.content
        }],
        usage={
            "input_tokens": response.usage.prompt_tokens,
            "output_tokens": response.usage.completion_tokens
        }
    )
Streamingโ
from litellm.types.utils import AdapterCompletionStreamWrapper
class AnthropicStreamWrapper(AdapterCompletionStreamWrapper):
    def __init__(self, completion_stream, model):
        super().__init__(completion_stream)
        self.model = model
        self.first_chunk = True
    
    async def __anext__(self):
        # First chunk
        if self.first_chunk:
            self.first_chunk = False
            return {"type": "message_start", "message": {...}}
        
        # Stream chunks
        async for chunk in self.completion_stream:
            return {
                "type": "content_block_delta",
                "delta": {"text": chunk.choices[0].delta.content}
            }
        
        # Last chunk
        return {"type": "message_stop"}
def translate_completion_output_params_streaming(self, stream, model):
    return AnthropicStreamWrapper(stream, model)
Use with Proxyโ
Add to your proxy config:
general_settings:
  pass_through_endpoints:
    - path: "/v1/messages"
      target: "my_module.MyAdapter"
Then call it:
curl http://localhost:4000/v1/messages \
  -H "Authorization: Bearer sk-1234" \
  -d '{"model": "gpt-4", "messages": [...]}'
Real Exampleโ
Check out the full Anthropic adapter:
That's itโ
- Create a class that inherits CustomLogger
- Implement the 3 translation methods
- Register with litellm.adapters = [{"id": "...", "adapter": ...}]
- Call with adapter_completion(adapter_id="...")